skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Xiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available April 10, 2026
  4. Asymmetric tadpole-shaped Janus particles with micrometer-sized flexible SiO2tails can distort the surrounding LC field into butterfly-shaped defects and create metastable cavities by balancing capillary, elastic, and viscous forces. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. The explosive growth in computation and energy cost of artificial intelligence has spurred interest in alternative computing modalities to conventional electronic processors. Photonic processors, which use photons instead of electrons, promise optical neural networks with ultralow latency and power consumption. However, existing optical neural networks, limited by their designs, have not achieved the recognition accuracy of modern electronic neural networks. In this work, we bridge this gap by embedding parallelized optical computation into flat camera optics that perform neural network computations during capture, before recording on the sensor. We leverage large kernels and propose a spatially varying convolutional network learned through a low-dimensional reparameterization. We instantiate this network inside the camera lens with a nanophotonic array with angle-dependent responses. Combined with a lightweight electronic back-end of about 2K parameters, our reconfigurable nanophotonic neural network achieves 72.76% accuracy on CIFAR-10, surpassing AlexNet (72.64%), and advancing optical neural networks into the deep learning era. 
    more » « less
    Free, publicly-accessible full text available November 8, 2025
  6. This feature article summarizes recent advances in extrusion-based 3D printing of active materials in both non-living and living systems. 
    more » « less
  7. We study deep neural networks for the multi-label classification (MLab) task through the lens of neural collapse (NC). Previous works have been restricted to the multi-class classification setting and discovered a prevalent NC phenomenon comprising of the following properties for the last-layer features: (i) the variability of features within every class collapses to zero, (ii) the set of feature means form an equi-angular tight frame (ETF), and (iii) the last layer classifiers collapse to the feature mean upon some scaling. We generalize the study to multi-label learning, and prove for the first time that a generalized NC phenomenon holds with the "pick-all-label'' formulation, which we term as MLab NC. While the ETF geometry remains consistent for features with a single label, multi-label scenarios introduce a unique combinatorial aspect we term the "tag-wise average" property, where the means of features with multiple labels are the scaled averages of means for single-label instances. Theoretically, under proper assumptions on the features, we establish that the only global optimizer of the pick-all-label cross-entropy loss satisfy the multi-label NC. In practice, we demonstrate that our findings can lead to better test performance with more efficient training techniques for MLab learning. 
    more » « less
  8. Blockchain technology, recognized for its decentralized and privacy-preserving capabilities, holds potential for enhancing privacy in contact tracing applications. Existing blockchain-based contact tracing frameworks often overlook one or more critical design details, such as the blockchain data structure, a decentralized and lightweight consensus mechanism with integrated tracing data verification, and an incentive mechanism to encourage voluntary participation in bearing blockchain costs. Moreover, the absence of framework simulations raises questions about the efficacy of these existing models. To solve above issues, this article introduces a fully third-party independent blockchain-driven contact tracing (BDCT) framework, detailed in its design. The BDCT framework features an RivestShamir-Adleman (RSA) encryption-based transaction verification method (RSA-TVM), achieving over 96% accuracy in contact case recording, even with a 60% probability of individuals failing to verify contact information. Furthermore, we propose a lightweight reputation corrected delegated proof of stake (RCDPoS) consensus mechanism, coupled with an incentive model, to ensure timely reporting of contact cases while maintaining blockchain decentralization. Additionally, a novel simulation environment for contact tracing is developed, accounting for three distinct contact scenarios with varied population density. Our results and discussions validate the effectiveness, robustness of the RSA-TVM and RC-DPoS, and the low storage demand of the BDCT framework. 
    more » « less